
DMOS FULL BRIDGE DRIVER

IL9001

DESCRIPTION

The circuit is a full bridge driver for motor control applications realized in Multipower-BCD technology which combines isolated DMOS power transistors with CMOS and Bipolar circuits on the same chip. By using mixed technology it has been possible to optimize the logic circuitry and the power stage to achieve the best possible performance. The DMOS output transistors can operate at supply voltages up to 42V and efficiently at high switching speeds. All the logic inputs are TTL, CMOS and μ C compatible. Each channel (half-bridge) of the device is controlled by a separate logic input, while a common enable controls both channels. *Features*

Supply voltage up to 48V 5A max peak current (2A max. for L6201) Total RMS Current up to 4A; R_{DS (ON)} 0.3 Ohm (typical value at 25 °C) Cross conduction protection TTL Compatible drive Operating frequency up to 100 kHz Thermal shutdown Internal logic supply high efficiency

Multiwatt11

Figure 1. Package and pin connection

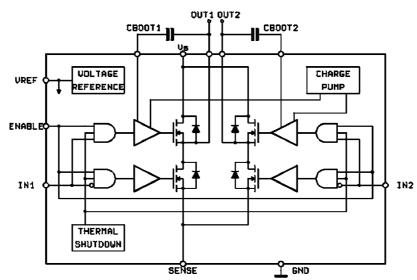


Figure 2. Simplified Block Diagram

PIN FUNCTIONS

Pin	Symbols	Functions			
1	SENSE 1	Sense resistor to provide the feedback for motor current control of the bridge A			
2	IN1	Digital input from the motor controller (bridge A)			
3	ENABLE 1	logic level low on this pin disable the bridge A			
4	OUT1	Dutput of one half bridge of the bridge A			
5	GND	Common Power Ground			
6	OUT3	Duput of one half bridge of the bridge B			
7	ENABLE 2	A logic level low on this pin disable the bridge B			
8	IN 3	Digital input from the motor controller (bridge B)			
9	SENSE 2	Sense resistor to provide the feedback for motor current control of the bridge B			
10	BOOSTRAP OSC.VCP	Oscillator output for the external charge pump			
11	IN 4	Digital input from the motor controller (bridge B)			
12	OUT 4	Output of one half bridge of the bridge B			
13	Vs2	Supply voltage bridge B			
14	Vs1	Supply Voltage bridge A			
15	OUT 2	Output of one half bridge of the bridge A			
16	IN 2	Digital input from the motor controller (bridge A)			
17	VBOOT	Overvoltage input for driving of the upper DMOS			

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Test Conditions	Unit
Vs	Supply Voltage	50	V
Vim, Ven	Input or Enable Voltage Range	-0.3 to +7	V
lo	Pulsed Output Current	3	A
VSENSE	Sensing Voltage	-1 to 4	V
Vboot	Bootstrap Supply	60	V
Ptot	Total power dissipation: (Tpins = 80°C)	5	W
Tstg, Tj	Storage and Junction Temperature	-40 to 150	°C

ELECTRICAL CHARACTERISTICS (Vs = 42V, Tj = 25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		12		48	V
ls	Total Quiescent Current	EN1=EN2=H; IN1=IN2=IN3- IN4=L			10	mA
		EN1 =EN2-L			10	mA
fc	Commutation Frequency			20		KHz
TJ	Thermal Shutdown			150		°C
Td	Dead Time Protection			500		ns
TRANSIST	ORS					
IDSS	Leakage Current	OFF		1		mA
RDS	On Resistance	ON1		1,2		Ohm
LOGIC LEV	/ELS					
VINL, VENL	Input Low Voltage		-0.3		0.8	V
VINH, VENH	Input High Voltage		2		7	V
IINL, IENL	Input Low Current	IN1 = IN2 = INS = IN4 - EN1 = EN2 = L			-10	uA
linh, Ienh	Input High Current	IN1 = IN2 = INS = IN4 = EN1 = EN2 = H		50		uA

IL9001

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
1 (Vi)	Source Current Turn-off Delay			300		ns
₂ (Vi)	Source Current Fall Time			200		ns
t₃ (Vi)	Source Current Turn-on Delay			400		ns
t ₄ (Vi)	Source Current Rise Time			200		ns
t ₅ (Vi)	Sink Current Turn-off Delay			300		ns
t ₆ (Vi)	Sink Current Fall Time			200		ns
t ₇ (Vi)	Sink Current Turn-on Delay			400		ns
₈ (Vi)	Sink Current Rise Time			200		ns

(*) Limited by power dissipation

(**) In synchronous rectification the drain-source voltage drop VDS is shown in fig. 4 (L6202/03); typical value for the L6201 is of 0.3V.

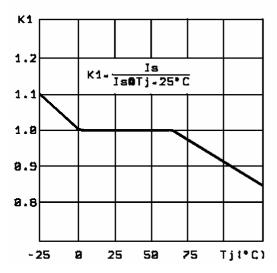
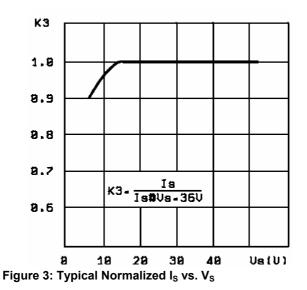
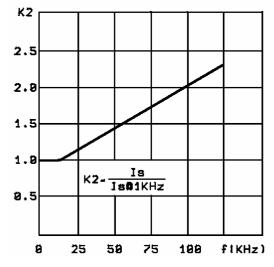
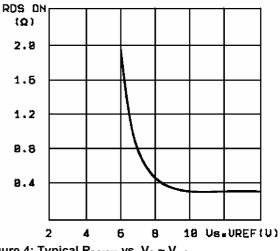
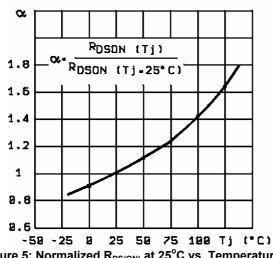



Figure 1: Typical Normalized Is vs. T_j


Figure 2: Typical Normalized Quiescent Current vs. Frequency

IL9001

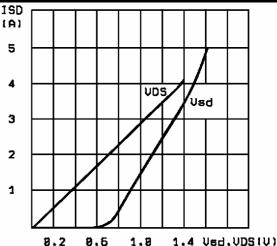
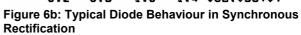
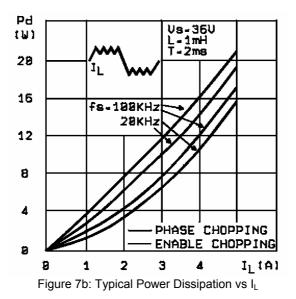




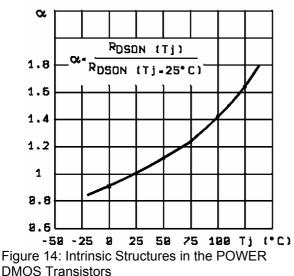
Figure 5: Normalized $R_{DS(ON)}$ at 25°C vs. Temperature Typical Values

CIRCUIT DESCRIPTION

The IL9001 is a monolithic full bridge switching motor driver realized in the new Mul-tipower-BCD technology which allows the integration of multiple, isolated DMOS power transistors plus mixed CMOS/bipolar control circuits. In this way it has been possible to make all the control inputs TTL, CMOS and C compatible and eliminate the necessity of external MOS drive components. The Logic Drive is shown in table 1.

Table 1			
Inputs			
			Output Mosfets (*)
	IN1	IN2	
	L	L	Sink 1, Sink 2
V _{EN} = H	L	Н	Sink 1, Source 2
	Н	L	Source 1, Sink 2
	Н	Н	Source 1, Source 2
V _{EN} = L	Х	Х	All transistors turned oFF

L = Low H = High X = DON't care


(*) Numbers referred to INPUT1 or INPUT2 controlled output stages

Although the device guarantees the absence of cross-conduction, the presence of the intrinsic diodes in the POWER DMOS structure causes the generation of current spikes on the sensing terminals. This is due to charge-discharge phenomena in the capacitors C1 & C2 associated with

IL9001

the drain source junctions (fig. 14). When the output switches from high to low, a current spike is generated associated with the capacitor C1. On the low-to-high transition a spike of the same polarity is generated by C2, preceded by a spike of the opposite polarity due to the charging of the input capacity of the lower POWER DMOS transistor (fig. 15).

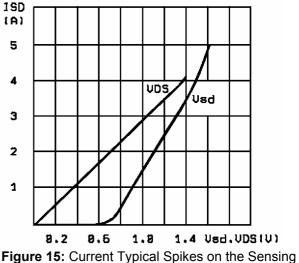


Figure 15: Current Typical Spikes on the Se Pin

TRANSISTOR OPERATION

ON State

When one of the POWER DMOS transistor is ON it can be considered as a resistor RDS (ON) throughout the recommended operating range. In this condition the dissipated power is given by : $PON = PDS(ON) + PS^2(DNS)$

 $PON = RDS(ON) \cdot IDS^{2}(RMS)$

The low RDS (ON) of the Multipower-BCD process can provide high currents with low power dissipation.

OFF State

When one of the POWER DMOS transistor is $^{\rm OFF\ the\ V}DS$ voltage is equal to the supply volt-

age and only the leakage current IDSS flows. The power dissipation during this period is given by : POFF = VS _ IDSS

The power dissipation is very low and is negligible in comparison to that dissipated in the ON STATE.

Transitions

As already seen above the transistors have an intrinsic diode between their source and drain that can operate as a fast freewheeling diode in switched mode applications. During recirculation with the ENABLE input high, the voltage drop across the transistor is RDS (ON). ID and when it reaches the diode forward voltage it is clamped. When the ENABLE input is low, the POWER MOS is OFF and the diode carries all of the recirculation current. The power dissipated in the transitional times in the cycle depends upon the voltage-current waveforms and in the driving mode. (see Fig. 7ab and Fig. 8abc).

Ptrans. = IDS (t) . VDS (t)

